Diagonal Arguments in CCC

Riley Moriss

December 9, 2022

Contents

1 Background 2
2 Fixed Point Theorem 4
3 Examples 5
3.1 Set Theory. 5
3.2 Incompleteness . 5

Notes on DIAGONAL ARGUMENTS AND CARTESIAN CLOSED CATEGORIES by F. WILLIAM LAWVERE.

1 Background

Definition: A Cartesian closed category (CCC) is a category C with the following three adjoints:

- A right adjoint to \mathcal{U} the unique functor into 1 , the category with one object and one morphism;

$$
\mathcal{U}: C \leftrightarrows \mathbf{1}: 1
$$

- A right adjoint to the diagonal functor

$$
\Delta: C \leftrightarrows C \times C: \times
$$

- For each $A \in C$ a right adjoint

$$
A \times(-): C \leftrightarrows C:(-)^{A}
$$

Recall that for an adjunction, $L \dashv R: C \rightarrow \mathcal{D}$ the unit and counit are natural transformations $\eta: i d_{C} \rightarrow R L$ (unit) $\epsilon: L R \rightarrow i d_{\mathcal{D}}$ (counit), making some diagrams commute.

For products we have the unit $\delta: i d_{C} \rightarrow \times \circ \Delta$ and counit $\pi: \Delta \circ \times \rightarrow i d_{C \times C}$. In particular the unit is important for us and can be described explicitly as

$$
\delta_{X}: X \rightarrow X \times X ; x \mapsto(x, x)
$$

For each exponential adjunction, $A \times(-) \dashv(-)^{A}$, there is a unit $\lambda_{A}: i d_{C} \rightarrow(A \times-)^{A}$ and co-unit $\epsilon_{A}: A \times(-)^{A} \rightarrow i d_{C}$. In the category of sets the unit is "pairing with an element"

$$
\left.\left.\begin{array}{rl}
\lambda_{A}(X): X & \rightarrow(A \times X)^{A} \\
x & \mapsto(\varphi: A
\end{array}\right) A \times X\right),
$$

And the co-unit is evaluation

$$
\begin{aligned}
\epsilon_{A}(X): A \times X^{A} & \rightarrow X \\
(a, \varphi) & \mapsto \varphi(a)
\end{aligned}
$$

Because in the cateory of sets the internal hom is sincerely the Hom.
Definition: For a morphism $f: A \times X \rightarrow Y$ we define its λ-transform (or "Currying") as the composition $f^{A} \circ\left(\lambda_{A}(X)\right)$

$$
X \xrightarrow{\lambda_{A}(X)}(A \times X)^{A} \xrightarrow{f^{A}} Y^{A}
$$

If we have an $f: A \times X \rightarrow Y$ and denote its λ-transform as $\bar{f}: A \rightarrow Y^{A}$ then if we are in the category of sets

$$
f(a, x)=\bar{f}(x)(a)
$$

The first adjunction in the definition of a CCC guarantees the existence of some (unique up to isomorphism) terminal object that we call (overloading the notation with the adjunction itself) simply 1.

Relation to generators of a category and the fact that in sets $\operatorname{Hom}(1, X) \cong X$
Definition: $g: X \rightarrow Z$ is point surjective iff for every $z: 1 \rightarrow Z$ there is some $x: 1 \rightarrow X$ such that $g \circ x=z$ i.e.

$$
g: X \rightarrow Z \text { point surjective } \Longleftrightarrow\left(\forall z \in \operatorname{Hom}_{C}(1, Z)\right)\left(\exists x \in \operatorname{Hom}_{C}(1, X)\right)(g \circ x=z)
$$

Definition: A map $g: X \rightarrow Y^{A}$ is weakly point surjective iff for every map $f: A \rightarrow Y$ there is some $x: 1 \rightarrow X$ such that on every $a: 1 \rightarrow A$ we have that $\epsilon(a, g \circ x)=f \circ a$ i.e.
$g: X \rightarrow Y^{A}$ weakly point surjective $\Longleftrightarrow\left(\forall f \in \operatorname{Hom}_{C}(A, Y)\right)\left(\exists x \in \operatorname{Hom}_{C}(1, X)\right)\left(\forall a \in \operatorname{Hom}_{C}(1, A)\right)(\epsilon(a, g \circ x)=f \circ a)$

Definition: An object Y (in a category C) has the fixed point property iff for every endomorphism of Y there is some $y: 1 \rightarrow Y$ such that $t \circ y=y$ i.e.

$$
Y \in C \text { has fixed point property } \Longleftrightarrow\left(\forall t \in \operatorname{Hom}_{\mathcal{C}}(Y, Y)\right)\left(\exists y \in \operatorname{Hom}_{\mathcal{C}}(1, Y)\right)(t \circ y=y)
$$

2 Fixed Point Theorem

Lemma 1 morphisms $A \times X \rightarrow Y$ are uniquely determined by their λ-transforms and visa versa.
The claim can be rephrased as: For an $f: A \times X \rightarrow Y$ we have that $h: X \rightarrow Y^{A}$ is the λ-transform of f iff the following diagram commutes

Finish the proof....
The condition of weak surjectivity can be rephrased in light of the lemma. For any $g: A \rightarrow Y^{A}$ weakly surjective we can look at the map \bar{g} whose λ-transform is g . Then for a, x as in the weak surjectivity definition, $\epsilon(a, g \circ x)=\bar{g}(a, x)$ by the diagram in 1 . Then we see that weak surjectivity of g is equivilient to the following condition on \bar{g} : for any $f: A \rightarrow Y$ there is an $x: 1 \rightarrow A$ such that for all $a: 1 \rightarrow A$

$$
\bar{g}(a, x)=f \circ a
$$

i.e. g is weakly point surjective onto the internal hom, Y^{A}, if every function, $f \in \operatorname{Hom}(A, Y), f$ is represented by $g(x)$ (up to what the terminal object sees and for some x).

Note that this is effectively the definition used in the proof and so we could rephrase this theorem to be in a category where only finite products exist.

Theorem 1 In a Cartesian closed category C and for an arbitrary object Y, if there exists some object A and a weak point surjective morphism $g: A \rightarrow Y^{A}$ then Y has the fixed point property.

Proof. Let A and $g: A \rightarrow Y^{A}$ be given as in the theorem. Now by the lemma there is a map $\bar{g}: A \times A \rightarrow Y$ whose lambda transform is g .

Now let $t \in \operatorname{Hom}(Y, Y)$ arbitrary. If we can give a fixed point of t then we will be done. So let $f: A \rightarrow Y$ be the map

$$
\begin{gathered}
A \xrightarrow{\delta_{A}} A \times A \xrightarrow{\bar{g}} Y \xrightarrow{t} Y \\
a \mapsto(a, a) \mapsto \bar{g}(a, a) \mapsto t \circ \bar{g}(a, a)
\end{gathered}
$$

Then by weak surjectivity of g there is an x such that for all a

$$
\bar{g}(a, x)=f(a)=t \circ \bar{g}(a, a)
$$

Then $\bar{g}(x, x)$ is a fixed point of t.
Perhaps the contrapositive of the theorem is more digestible: If there is a map $t: Y \rightarrow Y$ that has no fixed points then there can be no (weak point) surjections $A \rightarrow Y^{A}$ (for any A).

3 Examples

Theorem $2 \mathbb{R}$ is uncountable.

Proof. Note that we are working in the category of $\underline{S e t}$. It will suffice to show that there is no surjection $\mathbb{N} \rightarrow \mathbb{R}$.
Let $2=\{0,1\}$ then we notice that 2 does not have the fixed-point property because we have $t: 2 \rightarrow 2$ sending $1 \mapsto 0,0 \mapsto 1$.

Thus by the (contrapositive of the) theorem there are no surjections $\mathbb{N} \rightarrow 2^{\mathbb{N}} \cong \mathbb{R}$
Theorem 3 For any set S

$$
|S|<|\mathcal{P}(S)|
$$

where \mathcal{P} denotes the powerset

Proof. It suffices to prove that there is no surjection $S \rightarrow \mathcal{P}(S)$.
Again we know by the theorem that there is no surjection $S \rightarrow 2^{S} \cong \mathcal{P}(S)$ so we are done.
These proofs both rely on the fact that $\mathbb{R} \cong 2^{\mathbb{N}}$ or that $\mathcal{P}(S) \cong 2^{S}$. These facts are easy to prove however because we are in the category of sets where $2^{S}=\operatorname{Hom}(S, 2)$. Thus the arguments go that there is a clear bijection between these things and functions out of 2 .

For \mathbb{R} we the bijection to the Hom set is clear because any real number has a binary representation. For the powerset we think that for any subset there are two choices either inclusion or exclusion.

Theorem 4 (Russell's Paradox) (The lambda transform of) Set theoretic membership is not a weak point surjection.

Proof. Consider $\in: A \times A \rightarrow 2$ the set theoretic membership relation. Now assume that this is a weak point surjection (of its lambda transform), i.e. $\forall f: A \rightarrow 2$ we have that there is some $x \in A, \in(a, x)=f(a)$.

Then set $f=t \circ \in \circ \delta_{A}$ where t is the map $t: 2 \rightarrow 2$ sending $1 \mapsto 0,0 \mapsto 1$.

$$
\begin{aligned}
& \Longrightarrow f(a)=t \circ \in(a, a) \\
& \Longrightarrow \exists x \in A, \forall a \in A, f(a)=\in(x, a) \\
& \Longrightarrow \in(x, a)=t \circ \in(a, a) \\
& \Longrightarrow \in(a, a)=t \circ \in(a, a)
\end{aligned}
$$

i.e. $\in(a, a)$ is a fixed point of t . But this is a contradiction.

This is Russells paradox because by assuming that \in is a weak point surjection we are able to show that

$$
a \in a \Longleftrightarrow a \notin a
$$

where the right hand side is actually $t(a \in a)$.

