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1 Background

Definition: A Cartesian closed category (CCC) is a category C with the following three adjoints:

• A right adjoint toU the unique functor into 1, the category with one object and one morphism;

U : C⇆ 1 : 1

• A right adjoint to the diagonal functor
∆ : C⇆ C × C : ×

• For each A ∈ C a right adjoint
A × (−) : C⇆ C : (−)A

Recall that for an adjunction, L ⊣ R : C → D the unit and counit are natural transformations η : idC → RL (unit)
ϵ : LR→ idD (counit), making some diagrams commute.

For products we have the unit δ : idC → × ◦ ∆ and counit π : ∆ ◦ × → idC×C. In particular the unit is important for
us and can be described explicitly as

δX : X → X × X; x 7→ (x, x)

For each exponential adjunction, A× (−) ⊣ (−)A, there is a unit λA : idC → (A×−)A and co-unit ϵA : A× (−)A → idC.
In the category of sets the unit is "pairing with an element"

λA(X) :X → (A × X)A

x 7→ (φ : A→ A × X)
a 7→ (a, x)

And the co-unit is evaluation
ϵA(X) :A × XA → X

(a, φ) 7→ φ(a)

Because in the cateory of sets the internal hom is sincerely the Hom.

Definition: For a morphism f : A × X → Y we define its λ-transform (or "Currying") as the composition
f A ◦ (λA(X))

X
λA(X)
−−−−→ (A × X)A f A

−−→ YA

If we have an f : A × X → Y and denote its λ-transform as f̄ : A→ YA then if we are in the category of sets

f (a, x) = f̄ (x)(a)

The first adjunction in the definition of a CCC guarantees the existence of some (unique up to isomorphism)
terminal object that we call (overloading the notation with the adjunction itself) simply 1.

Relation to generators of a category and the fact that in sets Hom(1, X) � X

Definition: g : X → Z is point surjective iff for every z : 1→ Z there is some x : 1→ X such that g ◦ x = z i.e.

g : X → Z point surjective ⇐⇒ (∀z ∈ HomC(1,Z))(∃x ∈ HomC(1, X))(g ◦ x = z)

1

X Z
g

∀∃
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Definition: A map g : X → YA is weakly point surjective iff for every map f : A → Y there is some x : 1 → X
such that on every a : 1→ A we have that ϵ(a, g ◦ x) = f ◦ a i.e.

g : X → YA weakly point surjective ⇐⇒ (∀ f ∈ HomC(A,Y))(∃x ∈ HomC(1, X))(∀a ∈ HomC(1, A))(ϵ(a, g◦x) = f◦a)

X YA A × YA

x ∃gx (a, gx)

g(x)(a)

1 A Y

g A×(−)

∀a ∀ f

ϵA(Y)

Definition: An object Y (in a category C) has the fixed point property iff for every endomorphism of Y there is
some y : 1→ Y such that t ◦ y = y i.e.

Y ∈ C has fixed point property ⇐⇒ (∀t ∈ HomC(Y,Y))(∃y ∈ HomC(1,Y))(t ◦ y = y)

1

∃y

Y Y∀t
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2 Fixed Point Theorem
Lemma 1 morphisms A × X → Y are uniquely determined by their λ-transforms and visa versa.

The claim can be rephrased as: For an f : A × X → Y we have that h : X → YA is the λ-transform of f iff the
following diagram commutes

A × X

A × YA Y

f
A×h

ϵA(Y)

Finish the proof....

The condition of weak surjectivity can be rephrased in light of the lemma. For any g : A → YA weakly surjective
we can look at the map ḡ whose λ-transform is g. Then for a, x as in the weak surjectivity definition, ϵ(a, g◦ x) = ḡ(a, x)
by the diagram in 1. Then we see that weak surjectivity of g is equivilient to the following condition on ḡ: for any
f : A→ Y there is an x : 1→ A such that for all a : 1→ A

ḡ(a, x) = f ◦ a

i.e. g is weakly point surjective onto the internal hom, YA, if every function, f ∈ Hom(A,Y), f is represented by g(x)
(up to what the terminal object sees and for some x).

Note that this is effectively the definition used in the proof and so we could rephrase this theorem to be in a category
where only finite products exist.

Theorem 1 In a Cartesian closed category C and for an arbitrary object Y, if there exists some object A and a weak
point surjective morphism g : A→ YA then Y has the fixed point property.

Proof. Let A and g : A → YA be given as in the theorem. Now by the lemma there is a map ḡ : A × A → Y whose
lambda transform is g.

Now let t ∈ Hom(Y,Y) arbitrary. If we can give a fixed point of t then we will be done. So let f : A → Y be the
map

A
δA

−−−−−−→ A × A
ḡ

−−−−−−→ Y
t

−−−−−→ Y

a 7→ (a, a) 7→ ḡ(a, a) 7→ t ◦ ḡ(a, a)

Then by weak surjectivity of g there is an x such that for all a

ḡ(a, x) = f (a) = t ◦ ḡ(a, a)

Then ḡ(x, x) is a fixed point of t.

Perhaps the contrapositive of the theorem is more digestible: If there is a map t : Y → Y that has no fixed points
then there can be no (weak point) surjections A→ YA (for any A).
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3 Examples
Theorem 2 R is uncountable.

Proof. Note that we are working in the category of S et. It will suffice to show that there is no surjection N→ R.
Let 2 = {0, 1} then we notice that 2 does not have the fixed-point property because we have t : 2 → 2 sending

1 7→ 0, 0 7→ 1.
Thus by the (contrapositive of the) theorem there are no surjections N→ 2N � R

Theorem 3 For any set S
|S | < |P(S )|

where P denotes the powerset

Proof. It suffices to prove that there is no surjection S → P(S ).
Again we know by the theorem that there is no surjection S → 2S � P(S ) so we are done.

These proofs both rely on the fact that R � 2N or that P(S ) � 2S . These facts are easy to prove however because
we are in the category of sets where 2S = Hom(S , 2). Thus the arguments go that there is a clear bijection between
these things and functions out of 2.

For Rwe the bijection to the Hom set is clear because any real number has a binary representation. For the powerset
we think that for any subset there are two choices either inclusion or exclusion.

Theorem 4 (Russell’s Paradox) (The lambda transform of) Set theoretic membership is not a weak point surjection.

Proof. Consider ∈: A × A → 2 the set theoretic membership relation. Now assume that this is a weak point
surjection (of its lambda transform), i.e. ∀ f : A→ 2 we have that there is some x ∈ A, ∈ (a, x) = f (a).

Then set f = t◦ ∈ ◦δA where t is the map t : 2→ 2 sending 1 7→ 0, 0 7→ 1.

=⇒ f (a) = t◦ ∈ (a, a)
=⇒ ∃x ∈ A,∀a ∈ A, f (a) =∈ (x, a)
=⇒ ∈ (x, a) = t◦ ∈ (a, a)
=⇒ ∈ (a, a) = t◦ ∈ (a, a)

i.e. ∈ (a, a) is a fixed point of t. But this is a contradiction.

This is Russells paradox because by assuming that ∈ is a weak point surjection we are able to show that

a ∈ a ⇐⇒ a < a

where the right hand side is actually t(a ∈ a).
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